Biochimica et Biophysica Acta, 643 (1981) 168-176 © Elsevier/North-Holland Biomedical Press

BBA 79212

DIFFERENTIATION BETWEEN Ca²⁺ TRANSPORT AND ATP-INDUCED Ca²⁺ BINDING BY SARCOPLASMIC RETICULUM *

M.G.P. VALE and A.P. CARVALHO

Center for Cell Biology, Department of Zoology, University of Coimbra, 3049, Coimbra Codex (Portugal)

(Received November 7th, 1980)

Key words: Ca^{2+} uptake; Ca^{2+} binding; ATP; (Sarcoplasmic reticulum)

Summary

The Ca²⁺ actively accumulated by sarcoplasmic reticulum isolated from skeletal muscle is composed of two fractions; one represented by intravesicular free Ca²⁺ and another represented by Ca²⁺ selectively bound to the membranes. Both of these Ca²⁺ fractions depend on ATP, although it is not clear whether ATP hydrolysis is essential for accumulation of the second Ca²⁺ fraction. The existence of the membrane-bound Ca2+ induced by ATP is clearly shown in experiments in which the Ca²⁺ retention by sarcoplasmic reticulum is measured in the presence and in the absence of X-537A, a Ca²⁺ ionophore, which makes the membrane permeable to Ca²⁺. Thus, in the presence of X-537A all Ca²⁺ accumulated due to ATP is bound to the membranes. This membrane-bound Ca²⁺ represents about 30 nmol/mg protein in the range of external pCa values of 7 to 3.5. The magnitude of this Ca²⁺ fraction is slightly higher whether or not the experiments are performed in the presence of oxalate, which greatly increased the intravesicular Ca2+ accumulation. Furthermore, taking advantage of the impermeability of sarcoplasmic reticulum to EGTA, it is possible to show the existence of the membrane-bound Ca²⁺ as a distinct fraction from that which exists intravesicularly.

Introduction

The capacity of the sarcoplasmic reticulum to accumulate Ca²⁺ is the main event responsible for controlling muscle contraction [1,2]. However, the state

^{*} Part of these results were presented at the 'I Congresso Luso-Espanhol de Bioquímica', Coimbra, Portugal [29].

Abbreviation: EGTA, ethyleneglycol bis(β -aminoethyl ether)-N, N'-tetraacetic acid.

of the Ca²⁺ actively accumulated by the reticulum is still controversial and several possibilities have been described: (a) the Ca²⁺ is translocated across the membrane and is deposited in a free form inside the vesicles [1,3,4], equilibrating with binding sites [5–7]; (b) the Ca²⁺ ions are selectively bound to the membranes in the presence of ATP [8–14].

Numerous technical problems have made it difficult to discern between Ca²⁺ uptake and Ca²⁺ binding by sarcoplasmic reticulum. In the presence of oxalate, an active transport of Ca²⁺ appears to be evident [3,5,15,16]. The Ca²⁺ is taken up by a process dependent on the (Mg²⁺ + Ca²⁺)-ATPase activity and is retained in the form of oxalate crystals which have been identified by electron microscope examinations [17–19]. However, in the absence of precipitating agents it is not clear whether the Ca²⁺ is transported into the vesicles or whether ATP induces selective binding of Ca²⁺ to the membranes.

In this work we measured ATP-dependent Ca²⁺ uptake by sarcoplasmic reticulum under conditions which prevent the accumulation of intravesicular free Ca²⁺ (X-537A present), and we utilized EGTA to distinguish the fraction of Ca²⁺ which is retained at the external side of the membrane.

The results indicate that part of the Ca²⁺ actively taken up by sarcoplasmic reticulum is externally bound to the membranes and part is transported into the vesicles. Thus, selective binding of Ca²⁺ induced by ATP could be differentiated from the Ca²⁺ transport process.

Materials and Methods

Isolation of sarcoplasmic reticulum

Sarcoplasmic reticulum was isolated from rabbit white skeletal muscle as previously described [20].

Active uptake and binding of Ca²⁺ by isolated sarcoplasmic reticulum

Sarcoplasmic reticulum (0.5 mg/ml) was incubated at 35° C in a medium containing 10 mM Tris-maleate, 5 mM MgCl₂, 50 mM KCl, 40 μ M ionophore X-537A (if present), 1 mM EGTA, various concentrations of CaCl₂ and 2 mM ATP in a total volume of 2.0 ml at the pH value of 7.0. After 60 s of reaction, 0.5 mg of protein was removed from the medium by the Millipore filtration technique [15] and Ca²⁺ analyses were performed in both filters and filtrates as described below. Controlling tests were carried out under the same conditions but in the absence of ATP.

 ${\it Ca^{2+}}$ release from sarcoplasmic reticulum vesicles promoted by EGTA and ${\it X-537A}$

Active Ca²⁺ uptake by sarcoplasmic reticulum (0.5 mg/ml) was carried out at 35°C in a medium containing 10 mM Tris-maleate, 5 mM MgCl₂, 50 mM KCl, 5 mM potassium oxalate (if present), 0.15 mM CaCl₂ and 2 mM ATP in a total volume of 4.0 ml at pH 7.0. After 60 s of reaction, 0.5 mg of protein was removed from the medium by Millipore filtration, and the reaction vessel was transferred to one of several water baths equilibrated at several temperatures between 8 and 50°C. The Ca²⁺ release was initiated by adding 3 mM EGTA and, 30 s later, a new aliquot containing 0.5 mg of protein was withdrawn from

the medium and filtered through Millipore filters. In some experiments, the Ca²⁺ release was carried out under the same conditions, but the vesicles were previously loaded with Ca²⁺ at several temperatures, so that different amounts of Ca²⁺ were accumulated by the reticulum for 10 s or 60 s of uptake reaction in the absence or in the presence of oxalate, respectively.

The amount of Ca^{2+} externally bound to the membranes was determined by subtracting the Ca^{2+} retained in the presence of EGTA from that retained in its absence at temperatures under 40° C. At higher temperatures, the intravesicular Ca^{2+} is also released, but below 40° C the rate of release is very slow so that we could thus differentiate between intravesicular Ca^{2+} and Ca^{2+} bound to the outside of the vesicles.

Another group of experiments was performed at 35° C in the absence of oxalate in a medium otherwise as described above. After 60 and 90 s of uptake reaction, 0.5 mg of protein were removed from the medium by the Millipore filtration technique [15]. Then, $40~\mu\text{M}$ of X-537A was added and after 30 and 60 s new aliquots containing 0.5 mg of protein were removed from the medium and 3 mM EGTA was added. Finally, aliquots of 0.5 mg of protein were also filtered for Ca²⁺ analysis. In parallel experiments, EGTA was added before X-537A. The ionophore X-537A releases the intravesicular Ca²⁺, whereas EGTA removes predominantly the external Ca²⁺.

Analysis of Ca2+ and of protein

The analysis of Ca^{2+} retained by sarcoplasmic reticulum vesicles was determined by the Millipore filtration technique [15] as described above. The Millipore filters (HA, 0.45 μ M) retaining the protein were washed twice by filtering, each time, 1.0 ml of 0.25 M sucrose. Finally, they were immersed in 2.5 ml of a solution containing 2% trichloroacetic acid and 0.5% La^{3+} and, after vigorous agitation, Ca^{2+} was analysed in this solution by measuring absorption in a Perkin Elmer Spectrophotometer, Model 305.

In some experiments, Ca²⁺ analysis in the filtrates was also performed after adjusting concentrations of trichloroacetic acid and La³⁺ as indicated above.

The protein was measured by the biuret method [21] using bovine serum albumin as a standard.

Reagents

All chemical reagents were analytical grade. The ionophore X-537A was a generous gift of Dr. Julius Berger of Hoffman-La Roche, Nutley, NJ 07110, U.S.A.

Results

Selective binding of Ca^{2+} induced by ATP in sarcoplasmic reticulum membranes

As was reported before [11], at certain pCa values ATP promotes binding of Ca^{2+} to sarcoplasmic reticulum membranes in exchange for other cations, so that it has been doubtful whether the Ca^{2+} accumulated in the absence of precipitating agents is due to an active transport into the vesicles or to a selective binding to the membranes.

In this work we tentatively differentiate the existence of these processes in sarcoplasmic reticulum by studying active Ca²⁺ uptake and Ca²⁺ release under various experimental conditions.

Fig. 1 shows that active Ca^{2+} uptake depends on the Ca^{2+} concentrations in the medium reaching maximal values of about 155 nmol/mg protein at the pCa value of 6.2. By using the ionophore X-537A, which increases the Ca^{2+} permeability of the membrane, we studied the effect of ATP on the retention of Ca^{2+} by sarcoplasmic reticulum under conditions which do not permit intravesicular Ca^{2+} accumulation. Indeed, the Ca^{2+} retention of the vesicles was greatly reduced in the presence of the ionophore. However, significant amounts of Ca^{2+} were retained as compared with those observed under the same conditions but in the absence of ATP. This fraction of Ca^{2+} retained in the presence of ATP and X-537A is probably bound to the membranes and represents about 30 nmol/mg protein in the range of external pCa values of 7 to 3.5. It appears therefore that besides an active transport process, ATP promotes selective binding of Ca^{2+} to the sarcoplasmic reticulum membranes.

Differentiation between external Ca²⁺ binding and intravesicular Ca²⁺ accumulation by sarcoplasmic reticulum

Since controversial interpretation has been reported about the state and the localization of the Ca²⁺ actively stored by sarcoplasmic reticulum, it appears of

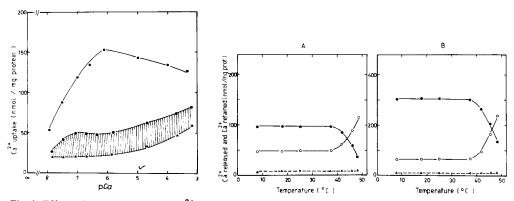


Fig. 1. Effect of pCa on the active Ca^{2+} uptake by sarcoplasmic reticulum. The reticulum vesicles (0.5 mg/ml) were incubated in a medium containing 10 mM Tris-maleate, 5 mM MgCl₂, 50 mM KCl, 40 μ M of X-537A (if present), 1 mM EGTA and various concentrations of $CaCl_2$ in a total volume of 2 ml at pH 7.0. The uptake reaction was started by adding 2 mM ATP and, 60 s later, 0.5 mg of protein was removed from the medium by the Millipore filtration technique. A control in the absence of ATP was carried out under the same conditions. \blacksquare , Ca^{2+} retained in the presence of ATP and in the absence of ATP and in the presence of X-537A; \blacksquare , Ca^{2+} retained in the presence of ATP and in the presence of ATP and in the presence of X-537A. The shaded portion of the graph represents ATP-dependent Ca^{2+} binding.

Fig. 2. Effect of temperature on the EGTA-induced Ca^{2+} release from loaded sarcoplasmic reticulum vesicles. Ca^{2+} uptake by sarcoplasmic reticulum was carried out at 35° C, in the absence (A) or in the presence (B) of oxalate as described in the text. After 60 s of reaction, 1.0 ml aliquot containing 0.5 mg of protein was filtered through Millipore filters and the remaining reaction medium was equilibrated for 2 min at various temperatures. Then, 3 mM EGTA was added and a new aliquot containing 0.5 mg of protein was removed 30 s later and filtered. In control experiments, the reticulum was incubated in the absence of ATP. Ca^{2+} retained (•——•) and Ca^{2+} released (°——•) after EGTA addition to actively loaded vesicles in the presence of ATP. The sum of both fractions represents the total Ca^{2+} previously taken up. (\triangle ----- \triangle) Ca^{2+} released by EGTA from unloaded vesicles (in the absence of ATP).

interest to differentiate between the amount of Ca²⁺ which is bound externally to the membranes and the amount which is retained intravesicularly.

Fig. 2 shows that, between 8 and 40°C, the addition of EGTA induces liberation of about 40–45 or 60 nmol Ca²⁺/mg protein from vesicles preloaded with Ca²⁺ at 35°C in the absence (A) or in the presence (B) of oxalate, respectively. In both cases, the efflux of Ca²⁺ is significantly increased only at temperatures above 40°C, which indicates that at high temperatures, another fraction of the accumulated Ca²⁺ is accessible to EGTA. In contrast, over the range of temperatures studied, only small amounts of Ca²⁺ (about 10 nmol/mg protein) were released by EGTA from reticulum vesicles incubated in the absence of ATP. This is reasonable because, as we observe in Fig. 3, there is little passive binding at the Ca²⁺ concentrations used in these experiments.

Fig. 3 shows that the EGTA-induced Ca²⁺ release does not depend on the amount of Ca²⁺ previously accumulated by sarcoplasmic reticulum. The different loading of the reticulum vesicles was obtained by measuring uptake reaction at various temperatures for 10 s in the absence of oxalate (A) or for 60 s in its presence (B). The amount of Ca²⁺ accumulated for those periods increases with the temperature up to about 37°C. Above 40°C, the Ca²⁺ taken up sharply declines, especially when the reaction is performed in the absence of oxalate. Addition of EGTA after loading the vesicles at the various temperatures causes release of a constant fraction of Ca²⁺, which indicates that the fraction of Ca²⁺ accessible to EGTA has the same value in spite of differing amounts of Ca²⁺ having been taken up by the vesicles. In the presence of oxalate (Fig. 3B) the EGTA-induced Ca²⁺ release was higher at temperatures above 40°C, which

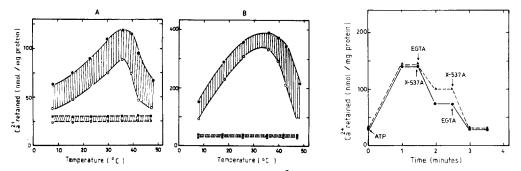


Fig. 3. Effect of temperature on the EGTA-induced Ca^{2+} release from sarcoplasmic reticulum vesicles containing different amounts of Ca^{2+} accumulated. Ca^{2+} uptake by sarcoplasmic reticulum was carried out for 10 s in the absence of oxalate (A) or for 60 s in its presence (B), at various temperatures between 8 and 50° C as described in the text. The analysis of Ca^{2+} release by EGTA was performed as described in Fig. 2. •, active Ca^{2+} uptake; \circ , Ca^{2+} remaining after EGTA addition; \blacksquare , passive Ca^{2+} binding; \square , intrinsic Ca^{2+} . The shaded portions of the graph represent the Ca^{2+} released by EGTA. Solid line, ATP present; dashed line, ATP absent.

Fig. 4. Release of specific Ca^{2+} fractions from sarcoplasmic reticulum by X-537A and EGTA. The vesicles were actively loaded with Ca^{2+} at 35°C as described in the text. After 60 s of reaction, 40 μ M X-537A and 3 mM EGTA, or vice-versa, were added to a final concentration in the medium of 40 μ M and 3 mM, respectively. Before and after addition of these compounds, aliquots containing 0.5 mg of protein were taken and were filtered through Millipore filters. •, Ca^{2+} retained by the reticulum before and after addition of first X-537A and then EGTA. •, Ca^{2+} retained by the reticulum after addition of first EGTA and then X-537A.

reflects that, during the uptake reaction at high temperatures, some Ca²⁺ was retained inside the vesicles in the precipitated form. In contrast, at these temperatures no Ca²⁺ appears to be accumulated inside the vesicles in the absence of oxalate and, therefore, only the external Ca²⁺ was released by EGTA (Fig. 3A). These observations indicate that the ATP-dependent Ca²⁺ bound, which is released by 3 mM EGTA, is independent of the total Ca²⁺ accumulated.

The results suggest that the Ca²⁺ taken up by sarcoplasmic reticulum in the presence of ATP is retained in two pools. One which is easily accessible to EGTA and another which is accessible only at high temperatures and probably represents intravesicular Ca²⁺ which flows out due to leakiness of the membranes.

The intravesicular Ca^{2+} fraction can also be released by ionophore X-537A. This ionophore increases the membrane permeability to Ca^{2+} so that intravesicular and extravesicular free Ca^{2+} concentrations equilibrate rapidly [22]. The results depicted in Fig. 4 show that distinct fractions of Ca^{2+} are released by EGTA and X-537A, respectively. The sarcoplasmic reticulum vesicles were actively loaded with Ca^{2+} at 35°C in the absence of oxalate. After uptake, the addition of X-537A (40 μ M) released about 70 nmol of Ca^{2+} per mg of protein whereas about 40 nmol/mg protein were further released by addition of EGTA (3 mM). As we observed in preliminary experiments, 40 μ M X-537A is enough to support maximal ionophore-mediated Ca^{2+} release.

Results previously reported by other investigators using optical methods [22,23] showed that X-537A completely releases the ${\rm Ca^{2^+}}$ actively accumulated by sarcoplasmic reticulum. However, some retention of ${\rm Ca^{2^+}}$ was detected by isotopic measurements in the presence of 20 μ M X-537A [22]. These discrepancies may be due to the lower sensitivity of the optical methods to detect the small fraction of ${\rm Ca^{2^+}}$ selectively bound to the membranes in the presence of ATP.

The results reported here permit us to differentiate between the intravesicular Ca²⁺ and the Ca²⁺ which is externally bound to the membranes. Indeed, addition of X-537A after the external Ca²⁺ was liberated by EGTA (Fig. 4) caused further release of about 70–75 nmol Ca²⁺ from the intravesicular region. This fraction of Ca²⁺ probably includes the Ca²⁺ which is free inside the vesicles and also that which is internally bound to the membranes. Therefore, it is concluded that a significant fraction (30 nmol/mg protein) of the Ca²⁺ actively taken up by sarcoplasmic reticulum in the absence of oxalate is bound to the external surface of the membrane, whereas about 70–75 nmol/mg protein is transported into the vesicles. In the presence of oxalate the amount of intravesicular Ca²⁺ is greatly increased, but the amount of externally bound Ca²⁺ is only slightly higher (Figs. 2 and 3).

Discussion

Several observations previously reported [8–14] indicate that the Ca²⁺ accumulated by isolated sarcoplasmic reticulum is mostly bound to the membranes. However, the bulk of the experimental results has been interpreted as evidence that the Ca²⁺ is actively transported at the expense of ATP, which is hydro-

lysed in the process [1,3,15,16,24]. As an alternative hypothesis it was considered that, probably, Ca²⁺ is first transported and then bound to the internal side of the membranes [5–7].

The results reported here show that besides an active Ca2+ transport, ATP induces selective binding of Ca²⁺ to the sarcoplasmic reticulum (Fig. 1). In the presence of X-537A there is no intravesicular Ca2+ accumulation but a small fraction of Ca2+ is retained by the membranes due to ATP (Fig. 1). These results are in agreement with those of Scarpa et al. [22] who observed marked reduction of the active Ca2+ uptake in the presence of X-537A, although a small remaining fraction was detected by the isotopic method but not by the murexide method. Taking advantage of the impermeability of the sarcoplasmic reticulum membrane to EGTA [5], we could differentiate the intravesicular Ca²⁺ accumulated from that externally retained in the presence of ATP. We found that EGTA easily removes the Ca2+ which is externally bound to the membranes, whereas the intravesicular Ca2+ is only accessible when the membranes are made permeable to Ca²⁺. When the membranes are incubated at temperatures below 40°C, the EGTA-induced Ca2+ release does not depend on the temperature (Fig. 2), which indicates that this release does not involve transmembrane flux of Ca²⁺. We observed before [25] that the Ca²⁺ efflux is mediated by ADP and this fraction of Ca2+, in turn, is temperature-dependent and is accompanied by ATP synthesis by reversal of the Ca²⁺ pump. In contrast, when the membranes are kept at high temperatures (over 40°C), a larger fraction of Ca²⁺ easily flows out from the vesicles, which suggests that the membranes have become leaky and that the intravesicular Ca2+ is released under these conditions. The amount of Ca²⁺ released by EGTA at temperatures below 40°C remains constant even when different amounts of Ca2+ have been accumulated during the uptake reaction at various temperatures, which indicates that, indeed, only extravesicular Ca2+ is removed from the vesicles by EGTA (Fig. 3). At higher temperatures (over 40°C), the amount of Ca²⁺ taken up decreases, probably because leakiness of the membrane occurs and Ca²⁺ can not be accumulated unless it is precipitated in the presence of oxalate. Furthermore, most of the Ca2+ which we found externally bound to the membranes is dependent on the presence of ATP, because in its absence negligible amounts of Ca²⁺ are passively bound by the reticulum at the low Ca²⁺ concentrations used.

These results strongly suggest that Ca²⁺ storage by sarcoplasmic reticulum includes two distinct fractions differentially localized in the vesicles. Indeed, we also observed (Fig. 4) that from the total Ca²⁺ retained by sarcoplasmic reticulum in the absence of oxalate (approx. 145 nmol/mg protein), about 40 nmol were released by EGTA and about 70–75 nmol were released by X-537A. Probably, part of the Ca²⁺ transported into the vesicles is also internally bound to the membranes, since the Ca²⁺ concentration within the vesicles would be sufficient to saturate all binding sites of the internal side of the membrane.

The binding capacity of the reticulum membranes has been extensively studied by several investigators and it has been shown that, under passive conditions, both sides of the membrane bind Ca^{2+} , although with different capacities and affinities [20,26]. However, as we observed here, passive Ca^{2+} binding is negligible at the Ca^{2+} concentrations needed to obtain maximal active uptake of Ca^{2+} by sarcoplasmic reticulum. Therefore, most of the Ca^{2+} which we

found bound to the external side of the membranes (Figs. 2, 3 and 4) is dependent on the presence of ATP. Carvalho and Leo [11] suggested that ATP increases the affinity of the membrane binding sites for Ca²⁺. These conclusions were further supported by Steinberg et al. [27] who found that phospholipids play an important role in ATP-dependent Ca²⁺ binding. They suggested that there is an ATP-dependent Ca²⁺ binding which differs from the active oxalate-dependent Ca²⁺ transport. Katz and Repke [28] also suggested that Ca²⁺ binding is effected by a limited number of high affinity sites and probably represents a process independent of the Ca²⁺ uptake. Our results support this view and suggest that ATP-dependent Ca²⁺ binding to the membrane occurs in the presence and in the absence of oxalate.

In summary, two pools of Ca²⁺ taken up at expense of ATP exist in sarcoplasmic reticulum. In the first pool, Ca²⁺ is externally bound to the membranes, whereas in the second one Ca²⁺ is inside the vesicles where it probably is in equilibrium with internal binding sites. Both phenomena need ATP, but in one case Ca²⁺ is selectively bound to sarcoplasmic reticulum membranes by a process which probably involves conformational changes induced by ATP [14] and in the other case Ca²⁺ is transported by a process which depends on the ATPase activity [1,3,15,16,24]. The relationship between these two processes is not clear. However, it appears that both processes, which have been formulated as alternatives for active Ca²⁺ uptake, exist in sarcoplasmic reticulum and probably play a role in the muscle contraction.

Acknowledgement

This work was supported by grants from the National Institute for Scientific Research (I.N.I.C.) of the Portuguese Ministry of Education. Part of these results were presented at the 'I Congresso Luso-Espanhol de Bioquímica' Coimbra, Portugal [29].

References

- 1 Hasselbach, W. (1964) Progr. Biophys. Mol. Biol. 14, 167-222
- 2 Ebashi, S. and Endo, M. (1968) Progr. Biophys. Mol. Biol. 18, 123-183
- 3 Hasselbach, W. and Makinose, M. (1962) Biochem. Biophys. Res. Commun. 7, 132-136
- 4 Hasselbach, W. (1979) Topics Curr. Chem. 78, 1-56
- 5 Weber, A., Herz, R. and Reiss, I. (1966) Biochem. Z. 345, 329-369
- 6 MacLennan, D.H. and Wong, P.T.S. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 1231-1235
- 7 Ikemoto, N., Nagy, B., Bhatnagar, G.M. and Gergely, J. (1974) J. Biol. Chem. 249, 2357-2365
- 8 Ohnishi, T. and Ebashi, S. (1963) J. Biochem. (Tokyo) 54, 506-511
- 9 Ohnishi, T. and Ebashi, S. (1964) J. Biochem. (Tokyo) 55, 599-603
- 10 Ebashi, S. (1961) J. Biochem. (Tokyo) 50, 236-244
- 11 Carvalho, A.P. and Leo, B. (1967) J. Gen. Physiol. 50, 1327-1352
- 12 Carvalho, A.P. (1968) J. Gen. Physiol. 51, 427-442
- 13 Carvalho, A.P. (1968) J. Gen. Physiol. 52, 622-642
- 14 Carvalho, A.P. (1974) in Calcium-Binding Proteins (Drabikowski, W., Golaszewska, H.S. and Carafoli, E., eds.), pp. 369-401, Elsevier Scientific Publishing Company, Amsterdam
- 15 Martonosi, A. and Feretos, R. (1964) J. Biol. Chem. 239, 648-658
- 16 Hasselbach, W. and Makinose, M. (1961) Biochem. Z. 333, 518-528
- 17 Agostine, B. and Hasselbach, W. (1971) Histochemie 28, 55-67
- 18 Deamer, D.W. and Baskin, R.J. (1969) J. Cell Biol. 42, 296-307
- 19 De Meis, L., Hasselbach, W. and Machado, R.D. (1974) J. Cell Biol. 62, 505-509
- 20 Vale, M.G.P. and Carvalho, A.P. (1975) Biochim. Biophys. Acta 413, 202-212

- 21 Layne, E. (1957) Methods Enzymol. 3, 447-454
- 22 Scarpa, A., Baldassare, J. and Inesi, G. (1972) J. Gen. Physiol. 60, 735-749
- 23 Caswell, A.M. and Pressman, B.C. (1972) Biochem. Biophys. Res. Commun. 49, 292-298
- 24 Martonosi, A. and Feretos, R. (1964) J. Biol. Chem. 239, 659-668
- 25 Vale, M.G.P. and Carvalho, A.P. (1980) Biochem, J. 186, 461-467
- 26 Miyamato, H. and Kasai, M. (1979) J. Biochem. (Tokyo) 85, 765-773
- 27 Steinberg, J., Masoro, E.J. and Yu, B.P. (1974) J. Lipid Res. 15, 537-542
- 28 Katz, A.M. and Repke, D.I. (1973) Biochim. Biophys. Acta 298, 270-278
- 29 Vale, M.G.P. and Carvalho, A.P. (1980) in Abstract I Congresso Luso-Espanhol Bioquímica, p. 109, Coimbra, Portugal